Vector Transport for Shape-from-Shading

نویسندگان

  • Fabio Sartori
  • Edwin R. Hancock
چکیده

In this paper we describe a new shape-from-shading method. We show how the parallel transport of surface normals can be used to impose curvature consistency and also to iteratively update surface normal directions so as to improve the brightness error. We commence by showing how to make local estimates of the Hessian matrix from surface normal information. With the local Hessian matrix to hand, we develop an “EM-like” algorithm for updating the surface normal directions. At each image location, parallel transport is applied to the neighbouring surface normals to generate a sample of local surface orientation predictions. From this sample, a local weighted estimate of the image brightness is made. The transported surface normal which gives the brightness prediction which is closest to this value is selected as the revised estimate of surface orientation. The revised surface normals obtained in this way may in turn be used to re-estimate the Hessian matrix, and the process iterated until stability is reached. We experiment with the method on a variety of real world and synthetic data. Here we explore the properties of the fields of surface normals and the height data delivered by the method. 2005 Published by Elsevier Ltd on behalf of Pattern Recognition Society.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond Lambertian Shape from Shading

Traditional shape from shading methods are based on the Lambertian surface model. Real images often contain specularities which violate this assumption and lead to undesired results. In [1] a method for color subspace based specularity removal has been proposed. This method only works with a good estimate of the source color given as a vector in RGB space. In this project we present two novel m...

متن کامل

3D Reconstruction of Skin Surface from Image Sequence

This paper proposes a new method for reconstruction a shape of skin surface replica from shading image sequence taken with di erent light source directions. Since the shading images include shadows caused by surface height uctuation, and specular and inter re ections, the conventional photometric stereo method is not suitable for reconstructing its surface accurately. In the proposed method, we...

متن کامل

The Lawn-Mowing Algorithm for noisy gradient vector elds

In this paper we analyze a speci c problem within the context of recovering the geometric shape of an unknown surface frommultiple noisy shading patterns generated by consecutive parallel illuminations by di erent light-sources. Shading-based single-view shape recovery in computer vision often leads to vector elds (i.e. estimated surface normals) which have to be integrated for calculations of ...

متن کامل

استخراج مدل رقومی زمین از یک تصویر با استفاده از تکنیک Shape from Shading

تکنیک(SFS)،از جمله روشهایی است که جهت تولید DTM از مناطق با Texture ضعیف،مطرح میباشد که با در نظر گرفتن ارتباط درجات خاکستری تصویر،توپوگرافی سطح زمین و جهت تابش نور،امکان بازسازی DTMاز یک تصویر را امکان پذیر میسازد. در این تحقیق،جهت پیاده سازی این الگوریتم براساس مدل لامبرتین از دو نوع داده،شبیه سازی شده و واقعی،استفاده شده است. مدل رقومی زمین برای تصویر شبیه سازی شده از یک سطحBilinear با دقت ...

متن کامل

A Machine learning approach for Shape From Shading

The aim of Shape From Shading (SFS) problem is to reconstruct the relief of an object from a single gray level image. In this paper we present a new method to solve the problem of SFS using Machine learning method. Our approach belongs to Local resolution category. The orientation of each part of the object is represented by the perpendicular vector to the surface (Normal Vector), this vector i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2003